a2 United States Patent

Antony

US009189609B1

US 9,189,609 B1
Nov. 17, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)
(73)

")

@

(22)

(1)

(52)

(58)

(56)

2011/0061112 AL*
2013/0167228 Al*

SECURING VIRTUAL MACHINES WITH
VIRTUAL VOLUMES

Applicant: VMware, Inc., Palo Alto, CA (US)
Inventor:

Jinto Antony, Bangalore (IN)

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 332 days.

Appl. No.: 13/914,618

Filed: Jun. 10, 2013

Int. Cl.

GO6F 2131 (2013.01)

GO6F 21/62 (2013.01)

GO6F 21/10 (2013.01)

GO6F 9/50 (2006.01)

GO6F 9/455 (2006.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC ..o GOG6F 21/31 (2013.01); GOGF 21/10

(2013.01); GO6F 21/62 (2013.01); HO4L 63/08
(2013.01); GOGF 9/455 (2013.01); GOGF
9/5077 (2013.01); GOGF 2009/45587 (2013.01)
Field of Classification Search
None
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

3/2011 Berengoltzetal. 726/30
6/2013 Wong 726/19

OTHER PUBLICATIONS

Unknown, “Comparison of Disk Encryption Software”, accessed at
<<http://en.wikipedia.org/w/index php?title=Comparison__of _
disk__encryption__software&oldid=544631910>>, Wikipedia,
accessed Apr. 9, 2013, 16 pages.

Unknown, “Trusted Platform Module”, accessed at <<http://en.
wikipedia.org/w/index.php?title=Trusted_ Platform_ Module
&oldid=549139596>>, Wlkipedia, accessed Apr. 13, 2013, 5 pages.
Unknown, “Virtual Trusted Platform Module”, accessed at <<http://
researcher.watson.ibm.com/researcher/view__project.
php?id=2850>>, IBM, accessed Apr. 9, 2013, 2 pages.

Unknown, “Dell Poweredge M710 Technical Guidebook: Inside the
Poweredge M710”, Dell, accessed at <<http://www.dell.com/down-
loads/global/products/pedge/en/server-poweredge-m7 10-tech-
guidebook.pdf>>, Dell, accessed Apr. 9, 2013, 31 pages.
Unknown, “Netapp and VMware: vVols Tech Preview”, accessed at
<<http://datacenterdude.com/vmware/netapp-vmware-vvol/>>,
Datacenter Dude, Oct. S, 2012, 5 pages.

* cited by examiner
Primary Examiner — Qing Wu

(57) ABSTRACT

Embodiments provide virtual volumes to virtual machines
based on configuration information to secure the virtual
machines. Each virtual volume, without a file system, repre-
sents a portion of a storage array and is associated with at least
one of the virtual machines. A host computing device attaches
the virtual volume to the virtual machine based on the con-
figuration information. Security software executing on the
virtual machine accesses security information (e.g., encryp-
tion keys, etc.) stored in the virtual volume to provide security
to the virtual machine (e.g., during bootup). In some embodi-
ments, the virtual volume is attached and detached from the
virtual machine as a universal serial bus (USB) device via an
application programming interface to the storage array.

20 Claims, 10 Drawing Sheets

Vs 100

HOST COMPUTING DEVICE

PROCESSOR 102

MEMORY AREA

VM

SECURITY
SOFTWARE

CONFIGURATION
INFORMATION

L 306

308

235 |~304

)

v

VIRTUAL VOLUME

312
SECURITY
INFORMATION

310

US 9,189,609 B1

Sheet 1 of 10

Nov. 17, 2015

U.S. Patent

AYOWAN
otsviva| 2 LOT-
< NOd0L | || FOVRAEIN
JOVHOLS / -
30IA30
EVAREI L, d40SS300dd JOV443LNI ¥3sSN
- » NOILYJINNINNOD 7 7
e 01 0TT
WYOMLAN
J10N3Y D,
WOY4/0L 1T

33IA3A ONILNdINOD LSOH

00T/

U.S. Patent Nov. 17, 2015 Sheet 2 of 10 US 9,189,609 B1

/ HOST COMPUTING DEVICE 100 \

VIRTUAL MACHINE EXECUTION SPACE 230

VM 2351 APPLICATIONS 270

GUEST OPERATING SYSTEM 265

N - ———— — ———

f
|
|
|
|
| 235 | **® | 235
|
|
|
|
\

:’VIRTUAL MACHINE MONITOR 275 H ‘: .‘ !

|
|| VIRTUAL HARDWARE PLATFORM 2401 : i | | |
8 157 ~ ! | | !
Ik 245 250 260 255 11 240 |, 1| 240u ||
! USER NETWORK [1]! | oo, !
'|1| PROCESSOR | | MEMORY || INTERFACE || COMMUNICATION || || | | ! |
i DEVICE INTERFACE |!} | | | !
i) 1! | : !
M<___ - — : I ' T :
—_— AN
__ .
DEVICE DRIVER LAYER 215 v

I

I
VIRTUAL | NETWORK COMMUNICATION | |
BRIDGE 225 INTERFACE DRIVER 220 :
I

/

14
|
|
|
|
|
|
|

HARDWARE PLATFORM 205

102 104 y 112 110
NETWORK USER

PROCESSOR MEMORY COMMUNICATION INTERFACE

k INTERFACE DEVICE /

FIG. 2

U.S. Patent

Nov. 17,2015 Sheet 3 of 10

US 9,189,609 B1

HOST COMPUTING DEVICE
102

PROCESSOR

MEMORY AREA

VM

SECURITY |,—306
SOFTWARE

/‘308

CONFIGURATION
INFORMATION

—235

'\

304

y

VIRTUAL VOLUME
/‘312

SECURITY
INFORMATION

310

FIG. 3

U.S. Patent Nov. 17, 2015 Sheet 4 of 10 US 9,189,609 B1

~ 100
HOST COMPUTING DEVICE
- 210
/ 235 HYPERVISOR [€
VM #1 2
~ 40 -
VM DISK FILE #1 (e.g., VMDK)
| VIRTUAL VOLUME #1 _!,
! (e.g., 10MB USB DRIVE) |
L2 Sm-m----=-
N310 235
- v 404
VM #2 ~ 402 STORAGE
VM DISK FILE #2 (e.g., VMDK) PROAVF:IDER
| VIRTUALVOLUME 52 I 406
Lieg 108 ss e I
N\ 310 ~—

STORAGE

\ 4

<—
VIRTUAL VOLUME #1 [310

VIRTUAL VOLUME #2 1310

N—

FIG. 4

US 9,189,609 B1

Sheet 5 of 10

Nov. 17, 2015

U.S. Patent

A 4

430INOUd

IdV 39V401S [

HOSINYAdAH |¢
o1z~
174V
(3anl¥a asn “8-9)
JNNTOA TVNLYINA
IIIIIIIIII \ 4
ore—
S100L WA (SO 1S3N9 WOY4 A31dAYON3
NSIA “3°3) 3114 MSIA WA
N
05—
20p —
INILSAS ONILYYIHO 1SIND
\ﬁ JUVYML10S NOILdAYIONT MSIa. H
0S
59z
567 A
gasn 3¥NI3s Y
HOVLIV Ol S1S3ND3Y

ANV S3LVIILNIHLNY ¥3asn

_ _ 80T
d3sn

U.S. Patent Nov. 17, 2015 Sheet 6 of 10 US 9,189,609 B1

600
¥

DEFINE A VIRTUAL VOLUME FROM STORAGE |~—002
ACCESSIBLE TO A HOST COMPUTING DEVICE

l

ASSOCIATE THE DEFINED VIRTUAL VOLUME WITH THE HOST /_604
COMPUTING DEVICE AND WITH ONE OF A PLURALITY OF VIRTUAL
MACHINES EXECUTING ON THE HOST COMPUTING DEVICE

l

606
PROVIDE THE VIRTUAL VOLUME TO A GUEST
OPERATING SYSTEM ON THE VM

l

CONFIGURE VM TO USE THE VIRTUAL VOLUME /‘608
AS SECURE STORAGE

FIG. 6

U.S. Patent Nov. 17, 2015 Sheet 7 of 10 US 9,189,609 B1

702
CREATE AVM 4

ENABLE
SECURE VIRTUAL
VOLUME?

AUTHENTICATE WITH STORAGE USING | 7/00
API (e.g., VASA)

|

CREATE A VIRTUAL VOLUME AND ASSIGN /_708
ONLY TO THE HOST THAT CREATED THE VM

|

ASSIGN THE VIRTUAL VOLUME TO THE VM |, —710
AS A MASS STORAGE DEVICE
(e.g., USB DRIVE)

!

GUEST OS THEN SETS CONDITIONS FOR
USE OF THE VIRTUAL VOLUME
(e.g., CONFIGURATION INFORMATION)

FIG. 7

U.S. Patent Nov. 17, 2015 Sheet 8 of 10 US 9,189,609 B1

800
s

/-308 l< /‘802

HOST COMPUTING DEVICE PROVIDES A VIRTUAL

C%ﬁggﬂiﬁgﬁh‘ VOLUME OF STORAGE TO A VM BASED ON
CONFIGURATION INFORMATION
ATTACH THE
VIRTUAL VOLUME
TOTHEVM

VM EXECUTES SECURITY SOFTWARE TO OBTAIN
SECURITY INFORMATION FROM THE VIRTUAL VOLUME
FOR USE IN SECURING THE VM

v /‘806
HOST COMPUTING DEVICE REMOVES THE VIRTUAL
VOLUME FROM THE VM BASED ON THE
CONFIGURATION INFORMATION

DETACH THE
VIRTUAL VOLUME
FROM THE VM

FIG. 8

U.S. Patent Nov. 17, 2015 Sheet 9 of 10 US 9,189,609 B1

900
¥

CONDITIONS
MET TO ATTACH VIRTUAL VOLUME,
OR EXPLICIT REQUEST FROM
GUEST 0S?

NO

AUTHENTICATE WITH STORAGE API

!

ATTACH VIRTUAL VOLUME VIA STORAGE API

CONDITIONS
MET TO DETACH VIRTUAL VOLUM
OR EXPLICIT REQUEST FROM
GUEST 0S?

910
AUTHENTICATE WITH STORAGE API a

|

DETACH VIRTUAL VOLUME VIA STORAGE API

FIG. 9

US 9,189,609 B1

Sheet 10 of 10

Nov. 17, 2015

U.S. Patent

[13ONVD] [< LX3N] [MovE >] d13H
[d13H]
301A3a1808 O
MSIQ QyvH O
EENCEINSREN@)
INIHOVIN TYNLYIA IHL OL JAINA aAQ/aD O
d3aav 39 NvO 331A3d SIHL JAIHA AddO 14 £
140od 131Iveavd O H 3NYA AddO L]
NOILYINHOANI 140d WI¥3s O | ¥31dVAV HHOMLAN €%
L IANa araiao O
aav OL HSIM NOA 321A3A 40 IdAL IHL ISO0HD | 3dAL IDIAAA L %SI0 QuvH]
0 ¥3TI0YLNOD 1SOS 1%
LANIHOVIA TYNLHIA ¥NOA OL adv OL HSIM NOA OQ 32IA3A 40 140S LYHM JFOIAIA IDNA _H_
5 JHVMdVH 4aV QuvD 03AIA %
snNdd []
SINA NIIMLIE IDNA 379YNI O 4 Qﬁzu_<>m M
SONILLIS IONA = [3A0W3Y] [AAY| S3IA3A 1TV MOHS O
: [WAl
g NOISYIA ANIHOVIN VN LHIA S30YNOSTA[SNOILJO | IHYMAHVH | 1SOH [
XEC| SaIY3d0Yd INIHOVN VNLIIAWNA_]
. — oo |0[o|o]d] v o
aWOH | @ B
AHOLNIANI MIIA LIQ3 F114
X LSOH|
2001~

US 9,189,609 B1

1

SECURING VIRTUAL MACHINES WITH
VIRTUAL VOLUMES

BACKGROUND

Virtualization provides datacenters with highly efficient
and available resource, networking, and storage management
to reduce infrastructure costs such as capital, power, space,
cooling, labor, and the like. In particular, virtual datacenters
can have numerous host computers each executing thousands
of virtual machines and guest operating systems. In such
virtual datacenters or other shared storage systems, multiple
host computers may share the same set of storage devices.

However, stealing a virtual machine by copying or modi-
fying a file representing the virtual machine may be per-
formed from anywhere on a network, or by using a flash drive.
Further, the virtual machine has at least one data file (e.g., a
virtual machine disk such as in the VMDK format) describing
the virtual machine. This data file may be copied even when
the virtual machine is not powered on, potentially resulting in
data loss.

Some existing systems attempt to prevent unauthorized
access to the physical host computers. For example, some of
the existing systems use hardware-specific cryptographic
coprocessors, or virtualized modules in a dedicated virtual
machine. However, these existing systems fail to protect vir-
tual machines, and their supporting data, hosted on the physi-
cal host computers. Further, in a virtualized environment a
virtual machine may be migrated from one host to another
host through operations such as vMotion from VMware, Inc.
In this case, it is difficult to provide security for these virtual
machines using hardware-specific cryptographic coproces-
sors. In particular, preventing access to the physical host
computers does not secure, individually, the virtual machines
hosted thereon. For example, using a virtualized module in a
virtual machine dedicated to protecting the host computer
does not protect the dedicated virtual machine. With the exist-
ing systems, virtual machine data may still be leaked even if
the physical host computer hosting the virtual machine is
protected using the existing systems.

SUMMARY

One or more embodiments described herein secure virtual
machines (VMs) with virtual volumes. The virtual volume is
defined from storage accessible to a host computing device,
and associated with the host computing device and with the
VM on the host computing device. The virtual volume is
provided to a guest operating system of the VM for use by the
VM as secure storage.

Alternatively or in addition, some embodiments contem-
plate the host computing device providing the virtual volume
of'storage to the VM based on configuration information. The
configuration information defines access by the VM to the
virtual volume. The virtual volume stores security informa-
tion associated with the VM. Security software executing on
the VM obtains the security information from the virtual
volume for use in securing the VM. The host computing
device removes the virtual volume from the VM based on the
configuration information.

This summary introduces a selection of concepts that are
described in more detail below. This summary is not intended
to identify essential features, nor to limit in any way the scope
of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary host computing
device.

10

15

20

25

35

40

45

50

55

60

65

2

FIG. 2 is a block diagram of virtual machines that are
instantiated on a computing device, such as the host comput-
ing device shown in FIG. 1.

FIG. 3 is a block diagram of a host computing device
having a virtual machine accessing a virtual volume based on
configuration information.

FIG. 4 is a block diagram of the relationship between
virtual volumes and virtual machines executing on a host
computing device.

FIG. 5 is a block diagram of a virtual volume being
attached to a virtual machine in response to a user request.

FIG. 6 is a flowchart of an exemplary method performed by
a host computing device to create and assign a virtual volume
to a virtual machine.

FIG. 7 is a flowchart of an exemplary method performed by
a host computing device to secure a virtual machine with a
virtual volume.

FIG. 8 is a flowchart of an exemplary method performed by
ahost computing device to attach and detach a virtual volume
for use by security software to secure a virtual machine.

FIG. 9 is a flowchart of an exemplary method performed by
ahost computing device to attach and detach a virtual volume
based on conditions or an explicit request from a guest oper-
ating system.

FIG. 10 is a screenshot of an exemplary user interface for
adding a virtual volume to a virtual machine.

Corresponding reference characters indicate correspond-
ing parts throughout the drawings.

DETAILED DESCRIPTION

Embodiments described herein provide an ecosystem for
securing virtual machines (VMs) 235 in a virtualized envi-
ronment in conjunction with security software 306 executing
on VMs 235. A virtual volume 310 is created, virtualized as a
mass storage device, and associated with one VM 235, in
some embodiments. As an example, aspects of the disclosure
are operable with any virtual volume 310, such as vVols
provided by VMware, Inc. In general, virtual volumes 310
represent a portion of storage (e.g., storage 406) that is
attached natively (e.g., without a file system) to VMs 235.
Virtual volumes 310 may be created via any application pro-
gramming interface (API) to storage arrays, such as by the
VMware vStorage APIs for Storage Awareness (VASA) pro-
vided by VMware, Inc. Virtual volumes 310 are viewed by
guest operating systems 265 executing on VMs 235 as, for
example, a universal serial bus (USB) disk connected to a
virtual USB controller of the VM 235.

Security software 306 executing on guest operating system
265 stores encryption keys, certificates, passwords, software
licenses, or other security information 312 in virtual volume
310. Virtual volume 310 is attached and detached according
to configuration information 308 to enable security software
306 to access security information 312 at particular times to
secure VM 235 (e.g., prevent unauthorized access by entities
to VM 235). For example, aspects of the disclosure provide
security from a pre-boot environment until guest operating
system 265 has booted by attaching virtual volume 310 dur-
ing the pre-boot environment (e.g., to enable access by disk
encryption software 502 which supports operating system
disk encryption) and then detaching virtual volume 310 after
guest operating system 265 has booted. In this manner, even
if data describing VM 235 is stolen by an entity, VM 235
remains encrypted by security information 312 that is
unavailable to the entity because security information 312 is
stored separate from the data describing VM 235.

US 9,189,609 B1

3

Aspects of the disclosure further achieve security with at
least platform integrity, disk encryption, and password pro-
tection. Platform integrity is achieved by, for example, pro-
viding security for the data describing VM 235 (e.g., provid-
ing security fora VM disk file 402 corresponding to VM 235).
Some embodiments provide platform integrity by preventing
tampering with VMs 235. Further, disk encryption is
achieved by enabling full disk encryption applications to use
virtual volumes 310 to protect the keys used to encrypt the
operating system and/or any disk and to provide secure boot-
ing of VM 235 and its guest operating system 265. Some
embodiments further contemplate adding a user-defined
password when attaching virtual volume 310 to VM 235.

FIG. 1 is a block diagram of an exemplary host computing
device 100. Host computing device 100 includes a processor
102 for executing instructions. In some embodiments, execut-
able instructions are stored in a memory 104. Memory 104 is
any device allowing information, such as executable instruc-
tions and/or other data, to be stored and retrieved. For
example, memory 104 may include one or more random
access memory (RAM) modules, flash memory modules,
hard disks, solid state disks, and/or optical disks.

Host computing device 100 may include a user interface
device 110 for receiving data from a user 108 and/or for
presenting data to user 108. User 108 may interact indirectly
with host computing device 100 via another computing
device such as VMware’s vCenter Server or other manage-
ment device. User interface device 110 may include, for
example, a keyboard, a pointing device, a mouse, a stylus, a
touch sensitive panel (e.g., a touch pad or a touch screen), a
gyroscope, an accelerometer, a position detector, and/or an
audio input device. In some embodiments, user interface
device 110 operates to receive data from user 108, while
another device (e.g., a presentation device) operates to
present data to user 108. In other embodiments, user interface
device 110 has a single component, such as a touch screen,
that functions to both output data to user 108 and receive data
from user 108. In such embodiments, user interface device
110 operates as a presentation device for presenting informa-
tion to user 108. In such embodiments, user interface device
110 represents any component capable of conveying infor-
mation to user 108. For example, user interface device 110
may include, without limitation, a display device (e.g., a
liquid crystal display (LCD), organic light emitting diode
(OLED) display, or “electronic ink” display) and/or an audio
output device (e.g., a speaker or headphones). In some
embodiments, user interface device 110 includes an output
adapter, such as a video adapter and/or an audio adapter. An
output adapter is operatively coupled to processor 102 and
configured to be operatively coupled to an output device, such
as a display device or an audio output device.

Host computing device 100 also includes a network com-
munication interface 112, which enables host computing
device 100 to communicate with a remote device (e.g.,
another computing device) via a communication medium,
such as a wired or wireless packet network. For example, host
computing device 100 may transmit and/or receive data via
network communication interface 112. User interface device
110 and/or network communication interface 112 may be
referred to collectively as an input interface and may be
configured to receive information from user 108.

Host computing device 100 further includes a storage inter-
face 116 that enables host computing device 100 to commu-
nicate with one or more datastores, which store virtual disk
images, software applications, and/or any other data suitable
for use with the methods described herein. In exemplary
embodiments, storage interface 116 couples host computing

10

20

25

30

35

40

45

55

60

65

4

device 100 to a storage area network (SAN) (e.g., a Fibre
Channel network) and/or to a network-attached storage
(NAS) system (e.g., via a packet network). The storage inter-
face 116 may be integrated with network communication
interface 112.

FIG. 2 depicts a block diagram of VMs 235,235, ...235,,
that are instantiated on host computing device 100. Host
computing device 100 includes a hardware platform 205,
such as an x86 architecture platform. Hardware platform 205
may include processor 102, memory 104, network commu-
nication interface 112, user interface device 110, and other
input/output (I/O) devices, such as a presentation device 106
(shown in FIG. 1). A virtualization software layer, also
referred to hereinafter as a hypervisor 210, is installed on top
of hardware platform 205.

The virtualization software layer supports a virtual
machine execution space 230 within which multiple virtual
machines (e.g., VMs 235, -235,) may be concurrently instan-
tiated and executed. Hypervisor 210 includes a device driver
layer 215, and maps physical resources of hardware platform
205 (e.g., processor 102, memory 104, network communica-
tion interface 112, and/or user interface device 110) to “vir-
tual” resources of each of VMs 235,-235,; such that each of
VMs 235,-235, has its own virtual hardware platform (e.g., a
corresponding one of virtual hardware platforms 240,-240,,),
each virtual hardware platform having its own emulated hard-
ware (such as a processor 245, a memory 250, a network
communication interface 255, a user interface device 260 and
other emulated I/O devices in VM 235,). Hypervisor 210 may
manage (e.g., monitor, initiate, and/or terminate) execution of
VMs 235,-235,,according to policies associated with hyper-
visor 210, such as a policy specifying that VMs 235,-235, are
to be automatically restarted upon unexpected termination
and/or upon initialization of hypervisor 210. In addition, or
alternatively, hypervisor 210 may manage execution VMs
235,-235,, based on requests received from a device other
than host computing device 100. For example, hypervisor 210
may receive an execution instruction specifying the initiation
of execution of first VM 235, from a management device via
network communication interface 112 and execute the execu-
tion instruction to initiate execution of first VM 235, .

In some embodiments, memory 250 in first virtual hard-
ware platform 240, includes a virtual disk that is associated
with or “mapped to” one or more virtual disk images stored on
a disk (e.g., a hard disk or solid state disk) of host computing
device 100. The virtual disk image represents a file system
(e.g., a hierarchy of directories and files) used by first VM
235, in a single file or in a plurality of files, each of which
includes a portion of the file system. In addition, or alterna-
tively, virtual disk images may be stored on one or more
remote computing devices 100, such as in a storage area
network (SAN) configuration. In such embodiments, any
quantity of virtual disk images may be stored by the remote
computing devices 100.

Device driver layer 215 includes, for example, a commu-
nication interface driver 220 that interacts with network com-
munication interface 112 to receive and transmit data from,
for example, a local area network (LAN) connected to host
computing device 100. Communication interface driver 220
also includes a virtual bridge 225 that simulates the broad-
casting of data packets in a physical network received from
one communication interface (e.g., network communication
interface 112) to other communication interfaces (e.g., the
virtual communication interfaces of VMs 235,-235,). Each
virtual communication interface for each VM 235,-235,,
such as network communication interface 255 for first VM
235,, may be assigned a unique virtual Media Access Control

US 9,189,609 B1

5

(MAC) address that enables virtual bridge 225 to simulate the
forwarding of incoming data packets from network commu-
nication interface 112. In an embodiment, network commu-
nication interface 112 is an Ethernet adapter that is configured
in “promiscuous mode” such that all Ethernet packets that it
receives (rather than just Ethernet packets addressed to its
own physical MAC address) are passed to virtual bridge 225,
which, in turn, is able to further forward the Ethernet packets
to VMs 235,-235,. This configuration enables an Ethernet
packet that has a virtual MAC address as its destination
address to properly reach the VM in host computing device
100 with a virtual communication interface that corresponds
to such virtual MAC address.

Virtual hardware platform 240, may function as an equiva-
lent of a standard x86 hardware architecture such that any
x86-compatible desktop operating system (e.g., Microsoft
WINDOWS brand operating system, LINUX brand operat-
ing system, SOLARIS brand operating system, NETWARE,
or FREEBSD) may be installed as guest operating system
(OS) 265 in order to execute applications 270 for an instan-
tiated VM, such as first VM 235, . Virtual hardware platforms
240,-240,, may be considered to be part of virtual machine
monitors (VMM) 275,-275,, that implement virtual system
support to coordinate operations between hypervisor 210 and
corresponding VMs 235,-235,,. Those with ordinary skill in
the art will recognize that the various terms, layers, and cat-
egorizations used to describe the virtualization components
in FIG. 2 may be referred to differently without departing
from their functionality or the spirit or scope of the disclosure.
For example, virtual hardware platforms 240,-240,, may also
be considered to be separate from VMMs 275,-275,,, and
VMMs 275,-275,, may be considered to be separate from
hypervisor 210. One example of hypervisor 210 that may be
used in an embodiment of the disclosure is included as a
component in VMware’s ESX brand software, which is com-
mercially available from VMware, Inc.

FIG. 3 is a block diagram of host computing device 100
having VM 235 accessing virtual volume 310 based on con-
figuration information 308. An administrator, or other user
108, interacts with host computing device 100 to secure one
or more of VMs 235, such as described herein. Host comput-
ing device 100 represents any device executing instructions
(e.g., as application programs, operating system functional-
ity, or both). For example, host computing device 100
executes instructions to implement the operations illustrated
and described with reference to the figures (e.g., FIG. 6, FIG.
7, FIG. 8, and/or FIG. 9). Host computing device 100 may
include any computing device or processing unit. For
example, host computing device 100 may represent a group of
processing units or other computing devices, such as in a
cloud computing configuration.

Host computing device 100 has at least one processor 102
and a memory area 304. Processor 102 includes any quantity
of processing units, and is programmed to execute computer-
executable instructions for implementing aspects of the dis-
closure. The instructions may be performed by processor 102
or by multiple processors executing within host computing
device 100, or performed by a processor external to comput-
ing device. In some embodiments, processor 102 is pro-
grammed to execute instructions such as those illustrated in
the figures (e.g., FIG. 6, FIG. 7, FIG. 8, and/or F1G. 9).

In some embodiments (not shown), host computing device
100 accesses hosts and datastores via a network. The network
represents any means for communication with hosts and
datastores. Aspects of the disclosure are operable with any
network type or configuration.

10

15

20

25

30

35

40

45

50

55

60

65

6

Memory area 304 includes any quantity of computer-read-
able media associated with or accessible by host computing
device 100. Memory area 304, or portions thereof, may be
internal to host computing device 100 (memory 104), exter-
nal to host computing device 100 (e.g., storage 406), or both.

In the example of FIG. 3, memory area 304 further stores
one or more VMs 235 each having at least one guest operating
system 265 executing thereon. In the example of FIG. 3, VM
235 stores security software 306. Security software 306 may
be any of a plurality of security software products available to
guest operating system 265 (e.g., stored in memory area 304)
executed by VM 235. For example, security software 306 may
include applications installed on VM 235 such as BIT-
LOCKER brand computer software, Symantec Endpoint
Encryption, TRUECRYPT brand computer software, and
McAfee Endpoint Encryption. However, aspects of the dis-
closure are operable with any security software 306 that oper-
ates to prevent unauthorized access to VM 235 or portions
thereof. For example, security software 306 includes any disk
encryption software 502 that accesses an encryption key as a
token.

Memory area 304 further stores configuration information
308 associated with at least VM 235 as shown in FIG. 3.
Configuration information 308 defines access by VM 235 to
virtual volume 310. For example, configuration information
308 describes when to attach and/or when to detach virtual
volume 310 from VM 235 (e.g., from guest operating system
265). Aspects of the disclosure are operable with any form of
configuration information 308, settings, conditions, and the
like. In some embodiments, the type, content, and/or format
of configuration information 308 differs based on the brand or
version of security software 306 available to guest operating
system 265.

Memory area 304 further stores a link or location of at least
one virtual volume 310. Virtual volume 310 represents exter-
nal storage 406 available to VM 235 (e.g., external to VM
235). As an example, virtual volume 310 may be provided as
apartition of a storage array and/or as araw disk (e.g., without
a file system). Virtual volume 310 is provided and removed
(e.g., attached and detached) from VM 235 based on configu-
ration information 308. Virtual volume 310 is capable of
storing any data. In some embodiments, virtual volume 310
stores security information 312 for use by security software
306.

FIG. 4 is a block diagram of the relationship between
virtual volumes 310 and VMs 235 executing on host comput-
ing device 100. In the example of FIG. 4, host computing
device 100 has two VMs 235 (VM #1 and VM #2), and
hypervisor 210 or any other virtualization software layer.
Each VM 235 has at least one VM disk file 402 (VM disk file
#1 and VM disk file #2) describing VM 235. VM disk file 402
represents a virtual disk that has the complete disk of VM 235
thereon. Each of VM disk file #1 and VM disk file #2 may be
in any format, such as the VM disk format (e.g., VMDK
provided by VMware, Inc.). Each of VM #1 and VM #2 has
one of virtual volumes 310 assigned thereto. For example,
virtual volume #1 is assigned to VM #1, and virtual volume #2
is assigned to VM #2. Host computing device 100 addition-
ally has access to storage 406, such as a disk array, storing
virtual volume #1 and virtual volume #2 as raw disks without
a file system. In another embodiment (not shown), virtual
volume #1 and virtual volume #2 are stored on different
storage arrays.

VM disk files 402 differ from virtual volumes 310 at least
in that VM disk files 402 may be stored in storage 406 after
creating a file system at the host computing device 100 level
(e.g., VM file system such as VMFS provided by VMware,

US 9,189,609 B1

7

Inc.) accessible to multiple host computing devices 100 in a
virtual datacenter. In contrast, while virtual volumes 310 may
also be stored in storage 406, each virtual volume 310 is
accessible only by VM 235 to which virtual volume 310 is
assigned (e.g., confirmed through authentication). Further,
VM disk files 402 are files, whereas virtual volumes 310 are
partitions or other raw disks from the host computing device
100 without file systems written thereon, in some embodi-
ments. The raw disk is attached as a USB disk to a virtual USB
controller of VM 235. The guest operating system 265 or
application inside VM 235 can use the raw disk with or
without a file system on the disk. For example, the guest
operating system 265 or application inside VM 235 may
create any type of file system on the attached USB disk and
store security keys or certificates on the attached USB disk.

In operation, hypervisor 210 communicates with storage
406 via a storage API provider 404 to provide and/or remove
virtual volume #1 from VM #1, and virtual volume #2 from
VM #2. For example, a VASA daemon executing on host
computing device 100 interacts with storage 406 using a
vendor-provided storage API to attach and/or detach virtual
volume #1 and virtual volume #2 as USB drives. Aspects of
the disclosure, however, are operable with any storage API
provider 404 capable of describing the storage capabilities of
one or more storage arrays, or otherwise interacting with the
storage arrays. VAS A, the VMware vStorage APIs for Storage
Awareness provided by VMware, Inc., in particular is capable
of interacting with multiple vendors of storage arrays. In
some embodiments, a computing device or VM 235 executes
to implement storage API provider 404.

In the example of FIG. 4, each of virtual volume #1 and
virtual volume #2 are provided to VM #1 and VM #2, respec-
tively, as 10 megabyte (MB) USB drives. Those skilled in the
art will note, however, that virtual volume #1 and virtual
volume #2 may represent any amount of memory (e.g., 5
megabytes, 100 megabytes, etc.). Further, the amount of vir-
tual volume #1 and virtual volume #2 may be the same or
different.

FIG. 5 is a block diagram of virtual volume 310 being
attached to VM 235 in response to a request from user 108. In
the example of FIG. 5, VM 235 has VM disk file 402 describ-
ing VM 235, VM tools 504, and guest operating system 265.
VM tools 504 represent any set of drivers or utilities assisting
with virtualization. For example, VM tools 504 may include
routines for creating virtual volumes 310, deleting virtual
volumes 310, and setting a size of virtual volumes 310. When
deleting virtual volumes 310, host computing device 100
obtains and receives confirmation from guest operation sys-
tem 265 before deleting any virtual volume 310. In this man-
ner, host computing device 100 avoids deleting any virtual
volume 310 that is used by another guest or application, thus
preventing the guest operating system 265 from becoming
unusable.

Guest operating system 265 has security software 306
installed thereon, such as any disk encryption software 502.
Guest operating system 265 creates virtual volumes 310 and
the VM disk files 402 are encrypted from guest operating
system 265 by disk encryption software 502. For example,
guest operating system 265 creates virtual volume #1, VM
disk file #1 is encrypted, and the disk encryption keys are
stored in virtual volume #1. Similarly, guest operating system
265 creates virtual volume #2, VM disk file #2 is encrypted,
and the disk encryption keys are stored in virtual volume #2.

In operation, user 108 requests, through VM tools 504,
attachment of virtual volume 310. In response, VM tools 504
communicates the user request to host computing device 100
(e.g., to hypervisor 210 associated with host computing

30

35

40

45

55

8

device 100) to attach virtual volume 310. Hypervisor 210
communicates with the storage array, such as storage 406
from FIG. 4, via storage API provider 404. For example,
hypervisor 210 instructs storage API provider 404 to attach
virtual volume 310 to VM 235 as a USB drive. In this
example, virtual volume 310 is attached to a virtual USB
controller of VM 235 using VASA based on user request. In
other example, virtual volume 310 may be attached on startup
of VM 235 or upon meeting any other condition(s), context,
rules, or other settings described by configuration informa-
tion 308.

Additional description of the creation and use of virtual
volumes 310 is next described with reference to FI1G. 6, FIG.
7, FIG. 8, and FIG. 9. While methods 600, 700, 800, 900 are
described with reference to execution generally by host com-
puting device 100, it is contemplated that any of methods 600,
700, 800, 900 may be performed by any component associ-
ated with host computing device 100 and/or any component
associated with a computing device separate from host com-
puting device 100. For example, methods 600, 700, 800, 900
may be performed by hypervisor 210, VM 235, guest operat-
ing system 265, applications executing on guest operating
system 265, and/or other entities. Further, methods 600, 700,
800, 900 may be performed by computer-executable instruc-
tions stored on one or more computer-readable storage media.
When executed by a processor such as processor 102, the
instructions cause the processor to secure VMs 235 with
virtual volumes 310.

FIG. 6 is a flowchart of an exemplary method performed by
host computing device 100 to create and assign virtual vol-
ume 310 to VM 235. At 602, host computing device 100
defines virtual volume 310 from storage 406 accessible to
host computing device 100. In some embodiments, the virtual
volume 310 represents a raw disk or partition, and does not
have a file system written thereon. Virtual volume 310 maps
to memory by, for example, mapping to a logical unit number
(LUN) in a storage area network (SAN) or mapping to a file
in a network file system (NFS). Each of virtual volumes 310
may be identified by an identifier unique among virtual vol-
umes 310. For example, each virtual volume 310 may be
tracked by a globally unique identifier (GUID). Defining
virtual volume 310 includes, in some embodiments, invoking
a routine via storage API provider 404 to create virtual vol-
ume 310 on a storage array. For example, virtual volume 310
is created using VASA.

At 604, virtual volume 310 is assigned to, or otherwise
associated with, host computing device 100 and with one of a
plurality of VMs 235 on host computing device 100. In such
embodiments, virtual volume 310 is associated with only one
VM 235 (e.g., to maintain security for VM 235). In other
embodiments, however, virtual volume 310 is not specific to
any particular VM 235, but instead may be used to store
security information 312 associated with a plurality of VMs
235. The plurality of VMs 235 may be stored on the same host
computing device 100 or on different host computing devices
100. At 606, host computing device 100 provides virtual
volume 310 to guest operating system 265 executing on the
assigned VM 235.

At 608, host computing device 100 configures VM 235 to
use virtual volume 310 as secure storage. For example, host
computing device 100 may define, and subsequently rely
upon, configuration information 308 describing authorized
access by the assigned VM 235 to virtual volume 310. Con-
figuration information 308 describes, for example, when to
attach and/or detach, as a partition, virtual volume 310 from
the assigned VM 235. As an example, configuration informa-
tion 308 defines attaching virtual volume 310 before booting

US 9,189,609 B1

9

guest operating system 265, and detaching virtual volume
310 after booting guest operating system 265, to secure VM
235. In another example, configuration information 308
defines attaching virtual volume 310 when a particular appli-
cation is executed by VM 235. In still another example, con-
figuration information 308 defines attaching virtual volume
310 storing a software license key only when a particular
application is attempting to verify the software license key.

In some embodiments, host computing device 100 uses
configuration information 308 to configure access to virtual
volume 310 by security software 306 available to guest oper-
ating system 265. As an example, VM 235 stores, in virtual
volume 310, hashed security information 312 for use by secu-
rity software 306. Security software 306 accesses the hashed
security information 312 from virtual volume 310 in accor-
dance with configuration information 308. In some embodi-
ments, security software 306 executes to define configuration
information 308. For example, host computing device 100
provides virtual volume 310 to VM 235, and then user 108
interacts with security software 306 to define configuration
information 308 for securing VM 235.

In embodiments in which a plurality of security software
products is available to guest operating system 265, host
computing device 100 may identity each of those security
software products. For example, host computing device 100
may access a list of applications installed on guest operating
system 265 and identify those application that may operate to
secure VM 235 (e.g., based on an application type declared by
each of the applications or by guest operating system 265).
Further, one or more of the plurality of security software
products may be automatically selected by host computing
device 100 to use virtual volume 310 to secure VM 235. That
is, in some embodiments, a plurality of security software
products executing on VM 235 may access the same virtual
volume 310 to secure VM 235. In other embodiments, a
plurality of security software products executing on VM 235
may access different virtual volumes 310 assigned to VM
235. Host computing device 100 may automatically select
one or more of the security software products based on, for
example, criteria or preferences associated with user 108,
applications executing on guest operating system 265, and/or
guest operating system 265. For example, a mail application
on guest operating system 265 may require a level of encryp-
tion provided only by a particular security software product.
In this example, host computing device 100 identifies the
security software product that provides the desired level of
encryption.

FIG. 7 is a flowchart of an exemplary method performed by
host computing device 100 to secure VM 235 with virtual
volume 310. VM 235 is created at 702. Host computing
device 100 determines whether a secure virtual volume 310
should be enabled at 704. For example, VM 235, applications
executing on VM 235, user 108, and/or guest operating sys-
tem 265 on VM 235 may request or have requirements for
accessing a secure virtual volume 310.

If a secure virtual volume 310 is desired, host computing
device 100 authenticates with storage 406 at 706 using, for
example, an API such as VASA. In some embodiments, host
computing device 100 authenticates by presenting credentials
uniquely associated with host computing device 100 relative
to other devices. The credentials may include one or more
identifiers associated with host computing device 100 such as
amedia access control (MAC) address, serial number, and/or
hardware data. The credentials may take the form of a hash
key.

Upon successful authentication, virtual volume 310 is cre-
ated and assigned at 708 only to host computing device 100

10

15

20

25

30

35

40

45

50

55

60

65

10
that created VM 235. At 710, virtual volume 310 is assigned
to VM 235 as, for example, a mass storage device. For
example, host computing device 100 virtualizes virtual vol-
ume 310 as a USB disk. In the example of FIG. 7, guest
operating system 265 executing on VM 235 sets conditions or
otherwise configures use of virtual volume 310 by security
software 306 to secure VM 235.

FIG. 8 is a flowchart of an exemplary method performed by
host computing device 100 to attach and detach virtual vol-
ume 310 for use by security software 306 to secure VM 235.
At 802, host computing device 100 provides virtual volume
310 to VM 235 based on configuration information 308.
Virtual volumes 310 may be attached and detached from VM
235 using any logic available to guest operating system 265
(e.g., with password authentication). In some embodiments,
virtual volumes 310 are hot-add and hot-plug supported. For
example, host computing device 100 attaches virtual volume
310 to a virtual USB controller of VM 235 as a USB mass
storage device, such as when powering on VM 235 or guest
operating system 265 (e.g., during bootup). In another
example, host computing device 100 receives a request from
user 108 or guest operating system 265 to attach virtual vol-
ume 310 to VM 235. In some embodiments, host computing
device 100 authenticates through storage API provider 404
when requesting access to virtual volume 310 from storage
406.

Virtual volume 310 stores, in this example, security infor-
mation 312. At 804, VM 235 executes security software 306
to access security information 312 from virtual volume 310
for use in securing VM 235. At 806, host computing device
100 removes virtual volume 310 from VM 235 based on
configuration information 308. For example, host computing
device 100 detaches virtual volume 310 from VM 235 as a
USB mass storage device, such as after bootup of VM 235 or
guest operating system 265. In another example, host com-
puting device 100 receives a request from user 108 or guest
operating system 265 to detach virtual volume 310 from VM
235.

FIG. 9 is a flowchart of an exemplary method performed by
host computing device 100 to attach and detach virtual vol-
ume 310 based on conditions, or an explicit request from
guest operating system 265. At 902, host computing device
100 determines whether conditions have been met to attach
virtual volume 310 to VM 235, or whether an explicit request
has been received from guest operating system 265. For
example, host computing device 100 accesses configuration
information 308 to determine when to attach virtual volume
310. In such an example, configuration information 308 may
store rules or parameters that host computing device 100
evaluates to determine whether a current context of VM 235
and/or guest operating system 265 satisfies the rules to
prompt attachment of virtual volume 310.

Upon determining virtual volume 310 should be attached
to VM 235, host computing device 100 authenticates with
storage API provider 404 at 904. For example, host comput-
ing device 100 authenticates with VASA. Upon successful
authentication, host computing device 100 attaches virtual
volume 310 to VM 235 at 906.

At 908, host computing device 100 determines whether
conditions have been met to detach virtual volume 310 from
VM 235, or whether an explicit request has been received
from guest operating system 265. For example, host comput-
ing device 100 accesses configuration information 308 to
determine when to detach virtual volume 310. In such an
example, configuration information 308 may store rules or
parameters that host computing device 100 evaluates to deter-

US 9,189,609 B1

11

mine whether a current context of VM 235 and/or guest
operating system 265 satisfies the rules to prompt detachment
of virtual volume 310.

Upon determining virtual volume 310 should be detached
from VM 235, host computing device 100 authenticates with
storage API provider 404 at 910. For example, host comput-
ing device 100 authenticates with VASA. Upon successful

12

migration of VM 235 from one host computing device 100 to
another host computing device 100.

In some examples, configuration information 308 for a
plurality of virtual volumes 310 on host computing device
100 is stored as a table. An exemplary table for storing such
configuration information 308 is shown below in Table 1.

TABLE 1

Exemplary Table Storing Configuration Information for Virtual Volumes.

Virtual
Volume OS Disk Application
D Size Array Host VM Attach Detach Encryption List
1 10 MB S1 H1 VM1 Preboot Postboot Yes Al,A2
2 100 MB S1 H1 VM2 Postboot oS No NIL
Shutdown
3 10 MB S4 H1 VM3 Preboot Postboot Yes Al,A2,A3
4 10 MB 82 H2 VM4 A4 A4 No A4
Application Application
Start Exit
5 10 MB S3 H3 VM5 A4 A4 No A4
Application Application
Start Exit

authentication, host computing device 100 detaches virtual
volume 310 from VM 235 at 912.

FIG.10is a screenshot of an exemplary user interface 1002
for adding virtual volume 310 to VM 235. In the example of
FIG. 10, host computing device 100 has created VM 235.
User 108 interacts with virtualization management software
to add a secure virtual volume 310 to VM 235. In this
example, user 108 selects VM 235 and then edits properties of
VM 235. Properties include a list of hardware devices acces-
sible to VM 235, as well as the option to add hardware
devices. User 108 chooses to add a hardware device, and
selects “USB controller” as the device type to add. User 108
continues to interact with host computing device 100 to set
the USB drive to be virtual volume 310.

Additional Examples

The following scenarios are merely exemplary and not
intended to be limiting in any way.

In one scenario, virtual volume 310 is stored in a storage
array accessible by a plurality of host computing devices 100.
Further, it may be desirable to migrate VM 235 from a first
host computing device to a second host computing device.
For example, an operation such as VMware, Inc.”s vMotion
may be performed to migrate VM 235 from one host to
another while VM 235 remains powered on. During such a
migration, the first host computing device (e.g., source host)
grants permission for the second host computing device (e.g.,
destination host) to access virtual volume 310 associated with
VM 235. For example, first host computing device authenti-
cates with storage API provider 404 that manages the storage
array and identifies the second host computing device to
storage API provider 404. After migration of VM 235 from
the first host computing device to the second host computing
device, the second host computing device revokes permission
for the first host computing device to access virtual volume
310. For example, second host computing device authenti-
cates with storage API provider 404 and identifies the first
host computing device to storage API provider 404. In this
manner, access to virtual volume 310 is preserved after

25

30

40

45

55

In the example of Table 1, a 10 MB virtual volume 310
mapped to storage array S1 is attached to VM 1 preboot and
detached postboot, a 100 MB virtual volume 310 also mapped
to storage array S1 is attached to VM 2 preboot and detached
upon OS shutdown (e.g., when VM 2 powers off), a 10 MB
virtual volume 310 mapped to storage array S4 is attached to
VM 3 preboot and detached postboot, a 10 MB virtual volume
310 mapped to storage array S2 is attached when application
A4 executes and removed when application A4 terminates,
and a 10 MB virtual volume 310 mapped to storage array S3
is attached when application A4 executes and removed when
application A4 terminates.

Table 1 also identifies host computing device 100 hosting
VMs 235, as well as whether OS disk encryption is enabled
and which applications are authorized to access virtual vol-
umes 310. However, those skilled in the art will appreciate
that more or less information may be stored as configuration
information 308 in Table 1.

Exemplary Operating Environment

The operations described herein may be performed by a
computer or computing device. The computing devices com-
municate with each other through an exchange of messages
and/or stored data. Communication may occur using any
protocol or mechanism over any wired or wireless connec-
tion. A computing device may transmit a message as a broad-
cast message (e.g., to an entire network and/or data bus), a
multicast message (e.g., addressed to a plurality of other
computing devices), and/or as a plurality of unicast messages,
each of which is addressed to an individual computing device.
Further, in some embodiments, messages are transmitted
using a network protocol that does not guarantee delivery,
such as User Datagram Protocol (UDP). Accordingly, when
transmitting a message, a computing device may transmit
multiple copies of the message, enabling the computing
device to reduce the risk of non-delivery.

Exemplary computer readable media include flash
memory drives, digital versatile discs (DVDs), compact discs
(CDs), floppy disks, and tape cassettes. By way of example
and not limitation, computer readable media comprise com-
puter storage media and communication media. Computer
storage media include volatile and nonvolatile, removable
and non-removable media implemented in any method or

US 9,189,609 B1

13

technology for storage of information such as computer read-
able instructions, data structures, program modules or other
data. Computer storage media are tangible and are mutually
exclusive to communication media. In some embodiments,
computer storage media are implemented in hardware. Exem-
plary computer storage media include hard disks, flash drives,
and other solid-state memory. In contrast, communication
media typically embody computer readable instructions, data
structures, program modules, or other data in a modulated
data signal such as a carrier wave or other transport mecha-
nism and include any information delivery media.

Although described in connection with an exemplary com-
puting system environment, embodiments of the disclosure
are operative with numerous other general purpose or special
purpose computing system environments or configurations.
Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with
aspects of the disclosure include, but are not limited to,
mobile computing devices, personal computers, server com-
puters, hand-held or laptop devices, multiprocessor systems,
gaming consoles, microprocessor-based systems, set top
boxes, programmable consumer electronics, mobile tele-
phones, network PCs, minicomputers, mainframe computers,
distributed computing environments that include any of the
above systems or devices, and the like.

Embodiments of the disclosure may be described in the
general context of computer-executable instructions, such as
program modules, executed by one or more computers or
other devices. The computer-executable instructions may be
organized into one or more computer-executable components
or modules. Generally, program modules include, but are not
limited to, routines, programs, objects, components, and data
structures that perform particular tasks or implement particu-
lar abstract data types. Aspects of the disclosure may be
implemented with any number and organization of such com-
ponents or modules. For example, aspects of the disclosure
are not limited to the specific computer-executable instruc-
tions or the specific components or modules illustrated in the
figures and described herein. Other embodiments of the dis-
closure may include different computer-executable instruc-
tions or components having more or less functionality than
illustrated and described herein.

Aspects of the disclosure transform a general-purpose
computer into a special-purpose computing device when pro-
grammed to execute the instructions described herein.

At least a portion of the functionality of the various ele-
ments illustrated in the figures may be performed by other
elements in the figures, or an entity (e.g., processor, web
service, server, application program, computing device, etc.)
not shown in the figures.

In some embodiments, the operations illustrated in the
figures may be implemented as software instructions encoded
on a computer readable medium, in hardware programmed or
designed to perform the operations, or both. For example,
aspects of the disclosure may be implemented as a system on
a chip or other circuitry including a plurality of intercon-
nected, electrically conductive elements.

The order of execution or performance of the operations in
embodiments of the disclosure illustrated and described
herein is not essential, unless otherwise specified. That is, the
operations may be performed in any order, unless otherwise
specified, and embodiments of the disclosure may include
additional or fewer operations than those disclosed herein.
For example, it is contemplated that executing or performing
a particular operation before, contemporaneously with, or
after another operation is within the scope of aspects of the
disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

14

When introducing elements of aspects of the disclosure or
the embodiments thereof, the articles “a,” “an,” “the,” and
“said” are intended to mean that there are one or more of the
elements. The terms “comprising,” “including,” and “having”
are intended to be inclusive and mean that there may be
additional elements other than the listed elements. The term
“exemplary” is intended to mean “an example of.”
Having described aspects of the disclosure in detail, it will
be apparent that modifications and variations are possible
without departing from the scope of aspects of the disclosure
as defined in the appended claims. As various changes could
be made in the above constructions, products, and methods
without departing from the scope of aspects of the disclosure,
it is intended that all matter contained in the above description
and shown in the accompanying drawings shall be interpreted
as illustrative and not in a limiting sense.
I claim:
1. A system for securing a virtual machine with a virtual
volume, said system comprising:
a memory area associated with a host computing device,
said memory area storing a location of a virtual volume,
security software, configuration information, and a plu-
rality of virtual machines (VMs), the virtual volume
storing security information associated with one of the
plurality of VMs, the configuration information defining
access by the one of the plurality of VMs to the virtual
volume; and
a processor programmed to:
assign the virtual volume to the host computing device
and to the one of the plurality of VMs;

attach, based on the configuration information stored in
the memory area, the assigned virtual volume to the
one of the plurality of VMs for use as secure storage;

execute the security software on the one of the plurality
of VM, the security software accessing the security
information from the attached virtual volume; and

detach, based on the configuration information, the
attached virtual volume from the one of the plurality
of VM.

2. The system of claim 1, wherein the processor is further
programmed to define the virtual volume in response to a
request from a user interacting with the one of the plurality of
VMs.

3. The system of claim 1, wherein the memory area further
stores a guest operating system executing on the one of the
plurality of VMs, and wherein the processor is further pro-
grammed to receive arequest from the guest operating system
to attach or to detach the virtual volume from the one of the
plurality of VMs.

4. The system of claim 1, wherein the processor is further
programmed to authenticate the one of the plurality of VMs
before attaching the virtual volume to the one of the plurality
of VM.

5. The system of claim 1, wherein the processor is pro-
grammed to attach the assigned virtual volume to the one of
the plurality of VMs as a universal serial bus (USB) drive.

6. The system of claim 1, wherein the processor is further
programmed to execute the security software to define the
configuration information.

7. A method comprising:

providing, by a host computing device to one of plurality of
virtual machines (VMs) based on configuration infor-
mation, a virtual volume of storage, the configuration
information defining access by the one of the plurality of
VMs to the virtual volume, the virtual volume storing
security information associated with the one of the plu-
rality of VMs;

US 9,189,609 B1

15

executing security software on the one of the plurality of
VM:s to obtain the security information from the virtual
volume for use in securing the one of the plurality of
VMs; and

removing, by the host computing device, the virtual vol-
ume from the one of the plurality of VMs based on the
configuration information.

8. The method of claim 7, wherein providing the virtual
volume to the one of' the plurality of VMs comprises attaching
the virtual volume, without a file system thereon, to the one of
the plurality of VMs as a universal serial bus (USB) mass
storage device.

9. The method of claim 7, wherein providing the virtual
volume to the one of the plurality of VMs based on the
configuration information comprises attaching the virtual
volume to the one of the plurality of VMs during bootup of a
guest operating system on the one of the plurality of VMs.

10. The method of claim 7, further comprising authenticat-
ing the one of the plurality of VMs before providing the
virtual volume to the one of the plurality of VMs.

11. The method of claim 7, wherein the virtual volume is
stored in a storage array, and further comprising granting
permission for another host computing device to access the
virtual volume via an application programming interface
(API) managing communication with the storage array.

12. The method of claim 11, further comprising migrating
the one of the plurality of VMs from the host computing
device to the another host computing device, the another host
computing device revoking, via the API, permission for the
host computing device to access the virtual volume after the
migration.

13. One or more computer-readable storage media includ-
ing computer-executable instructions that, when executed,
cause at least one processor to secure a virtual machine with
a virtual volume by:

defining a virtual volume from storage accessible to a host

computing device, the virtual volume lacking a file sys-
tem;

associating the defined virtual volume with the host com-

puting device and with one of a plurality of virtual
machines (VMs) on the host computing device; and

10

15

20

25

30

35

40

16

providing the defined virtual volume to a guest operating
system of the one of the plurality of VMs for use by the
one of the plurality of VMs as secure storage.

14. The computer storage media of claim 13, wherein the
computer-executable instructions further cause the processor
to define configuration information describing access by the
one of the plurality of VMs to the defined virtual volume.

15. The computer storage media of claim 14, wherein the
computer-executable instructions cause the processor to
define the configuration information by describing when to
attach and/or detach the defined virtual volume, as a partition,
from the one of the plurality of VMs.

16. The computer storage media of claim 14, wherein the
computer-executable instructions further cause the processor
to store security information in the defined virtual volume, the
guest operating system accessing the stored security informa-
tion from the defined virtual volume based on the defined
configuration information.

17. The computer storage media of claim 14, wherein the
computer-executable instructions define the configuration
information by configuring security software to attach the
defined virtual volume before booting the guest operating
system and to detach the defined virtual volume after booting
the guest operating system.

18. The computer storage media of claim 13, wherein the
computer-executable instructions further cause the processor
to configure access to the defined virtual volume by security
software available to the guest operating system.

19. The computer storage media of claim 18, wherein the
computer-executable instructions further cause the processor
to create a file system on the defined virtual volume to store a
security key associated with the security software.

20. The computer storage media of claim 13, wherein the
computer-executable instructions further cause the processor
to:

identify a plurality of security software products available

to the guest operating system; and

automatically select one of the plurality of security soft-

ware products to use the defined virtual volume to secure
the one of the plurality of VMs.

#* #* #* #* #*

